US009454351B2

a2 United States Patent

Anderson et al.

US 9,454,351 B2
*Sep. 27, 2016

(10) Patent No.:
45) Date of Patent:

(54) CONTINUOUS DEPLOYMENT SYSTEM FOR
SOFTWARE DEVELOPMENT
(71) Applicant: Amazon Technologies, Inc., Reno, NV
(US)

(72) Inventors: Keith H. Anderson, Bainbridge Island,
WA (US); John L. Kenyon, Seattle,
WA (US); Benjamin R. Hollis, Seattle,
WA (US); Jill Edwards, Seattle, WA
(US); Brad Reid, Renton, WA (US)
(73)

Assignee: Amazon Technologies, Inc., Seattle,

WA (US)
*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35

U.S.C. 154(b) by 178 days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/196,875

Filed: Mar. 4, 2014

(65) Prior Publication Data

US 2014/0189641 Al Jul. 3, 2014

Related U.S. Application Data

Continuation of application No. 13/245,539, filed on
Sep. 26, 2011, now Pat. No. 8,677,315.

(63)

Int. CL.
GO6F 9/44
GO6F 9/45

(51)
(2006.01)
(2006.01)

(Continued)

U.S. CL
CPC . GO6F 8/60 (2013.01); GO6F 8/71 (2013.01);
GO6F 9/4411 (2013.01); GOGF 11/3668
(2013.01); GOG6F 9/44526 (2013.01)
Field of Classification Search
CPC GO6F 11/3664; GO6F 11/3688; GO6F

(52)

(58)

11/3696; GOGF 8/61; GOGF 8/71; GOG6F 8/34,
GOG6F 8/65; GOG6F 8/60; GOGF 17/3056;
GO6F 8/10; GOG6F 8/20;, GOG6F 8/67; GO6F
8/36; GOG6F 11/2236; GOGF 11/3684; GO6F
9/44526;, GOGF 9/44505; GOGF 9/4411,
GO06Q 10/06

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,651,111 A * 7/1997 McKeeman GO6F 11/3688
714/38.1
7,080,351 B1* 7/2006 Kirkpatrick G06Q 10/06
717/102

(Continued)
OTHER PUBLICATIONS

Helio R. Costa et al., Evaluating software project portfolio risks,
2006, [Retrieved on May 11, 2016]. Retrieved from the internet:
<URL: http://ac.els-cdn.com/S0164121206001269/1-s2.0-
S0164121206001269-main.pdf> 16 Pages (16-30).*

(Continued)

Primary Examiner — Thuy Dao

Assistant Examiner — Anibal Rivera

(74) Attorney, Agent, or Firm — Knobbe, Martens, Olson &
Bear, LLP

(57) ABSTRACT

Examples of a continuous deployment system are provided
that manage and track releases of software code, where some
or all of the steps between check-in and deployment to
production can be automated. Such systems can reduce the
amount of developer effort needed to deploy a package, as
developers may not have to be responsible for scheduling
package builds, clicking deployment buttons, or manually
running tests. The system can take care of all or some of that
work.

20 Claims, 6 Drawing Sheets

Check-in Build
Souce | g >) g
ol | @

@ Deploy
@) %

Production

Pramote Promote

]]

workflow

Approval

| Q Package

Environment
revision

prnmm D DS stage

US 9,454,351 B2

Page 2
(51) Int. CL 2010/0162226 Al* 6/2010 BOIissOVc...... GOGF 8/67
GOG6F 9/445 (2006.01) 717173
2010/0235807 Al* 9/2010 Doddappa GOGF 8/10
GOGF 11/36 (2006.01) occappa 7177101
2010/0287547 Al* 11/2010 Korkishko HO04W 12/10
(56) References Cited 717/177
2011/0029963 Al* 2/2011 Smithcccceeee HO04L 67/34
U.S. PATENT DOCUMENTS 717/171
2011/0173591 Al* 7/2011 Prasad GOGF 8/10
7,437,712 B1* 10/2008 Brown GOGF 8/71 717/126
717/121 2011/0225217 Al* 9/2011 Plaxcccooeenee. GOGF 17/3056
7,568,183 B1* 7/2009 Hardy GOGF 11/3684 707/825
717/121 2011/0283253 Al* 11/2011 Duttaccooevvvennee. GOGF 8/10
8,060,585 B2* 11/2011 Waudcccccooenneen. GOGF 8/67 717/105
709/218 2011/0302472 Al1* 12/2011 Van Eikema
8,176,483 B2 5/2012 Hoefler et al. Hommes GOGF 11/2236
8,225,281 B1* 7/2012 Hardinger GOGF 11/3664 714/742
717/120 2012/0159423 Al* 6/2012 Becker GOGF 9/44526
8,490,084 B1* 7/2013 Alfordccccoovnnnn. GOGF 8/61 717/102
717/177
8,677,315 Bl 3/2014 Anderson et al. OTHER PUBLICATIONS
2003/0182652 Al* 9/2003 Custodiocccc..... GOGF 8/61 . . .
T17/122 Meira Levy et al., Agile Knowledge Management, 2009, [Retrieved
2004/0261053 Al* 12/2004 Dougherty GOG6F 8/20 on May 11, 2016]. Retrieved from the internet: <URL: http://mfile.
] 717/101 narotama.ac.id/files/Information%20System/Encyclopedia%-
2004/0261070 A1* 12/2004 Miller ...cccoovvvvvvnnevens GOGF 8/71 2001%20Information%20Science%20and%20Technology%620-
2005/0015762 Al* 1/2005 Steckler G0761F7é§1/;? (2nd%20Edition)/Agile%20Knowledge%20Management.pdf> 6
"""""""""" 717/176 Pages (112-117)*
2005/0044531 A1* 2/2005 Chawla ..o GOGF 8/71 E. Ries, Continuous deployment in 5 easy steps, O’Reilly Radar,
717/122 http://radar.oreilly.com/2009/03/continuous-deployment-5-eas.
2005/0108685 Al* 52005 Ta ..cooevvvrvnnnnn GO6F 8/71 html, dated Mar. 30, 2009, retrieved on Oct. 5, 2011.
717/120 D. Farley, The Deployment Pipeline, CruiseControl Enterprise,
2005/0114829 Al* 5/2005 Robin G06Q 10/06 2007.
" 717/101 B. Durrett, Scaling with Continuous Deployment, PowerPoint slides
2006/0212857 Al* 9/2006 Neumann ... G0761F7§1/ 3‘8 from Developer Summit, dated Jun. 29, 2010.
. M. Fowler, Continuous Integration, http:/martinfowler.com/ar-
3k
2006/0248522 Al* 11/2006 Lakshminarayanan ... G076 11:751/% ticles/continuousIntegration.html, dated May 1, 2006, retrieved on
2007/0006122 AL* 1/2007 Bailey coooorevrevrevreern, GO6F 8/61 Oct. 6, 2011 _ _ _
717/101 Michael Fagan, Design and code Inspection to Reduce Errors in
2007/0061782 Al* 3/2007 Schreiner GOGF 11/3688 ~ Program Development, 1976, IBM Systems Journal, [Retrieved on
717/124 Oct. 25, 2013]. Retrieved from the internet: <URL: http://download.
2007/0083859 Al* 4/2007 Fussellccccoeeen. GO6F 8/71 springer. com/static/pdf/816/chp%253A10.1007%252F978-3-642-
) 717/168 48354-7__13.pdf?auth66=1382893893_
2007/0234316 A1* 10/2007 Bayerlein GO6L ;i/7 L 21dcebd439da29a39934b7b3df758119&ext=pdf> 33 Pages (301-
717/140 334).
2008/0098385 Al* 4/2008 Alger GOGF 9/44505 Larry Allen et al., Clearcase multisite: Supporting geographically-
7171174 distributed software development, 1995, [Retrieved on Oct. 25
3k gl ’ . El
2009/0019420 Al /2009 Johnson ..cooocvvsvev G076 11:7%/(3)? 2013] Retrieved from the internet: <URL: http://download.springer.
2009/0070734 Al 3/2009 Dixon et al com/static/pdf/955/chp%253A10.1007%252F3-540-60578-9__18.
2010/0058294 Al* 3/2010 Best L GO6F 11/3688 pdf?auth66=1382894450_7e¢393ac9de07ed56e65a2ef4445b105¢
717/122 &ext=.pdf> 21 Pages (194-214).
2010/0088498 Al* 4/2010 Kreek GOGF 9/4411
713/1 * cited by examiner

U.S. Patent Sep. 27, 2016 Sheet 1 of 6 US 9,454,351 B2

100

5

CONTINUOUS DEPLOYMENT
SYSTEM (CDS) |

130 DEPLOYMENT
ENVIRONMENT(S)

CDS
MANAGER

| 135

125

—~ NETWORK
TESTING

MODULE(S)

127

‘ ‘ 120 CDS
INTERFACE

STORAGE
NODE(S)

115

110
NETWORK

105

/\

DEVELOPER
COMPUTING

SYSTEMS

FIG. 1

US 9,454,351 B2

Sheet 2 of 6

Sep. 27, 2016

U.S. Patent

uonosNpold

eydyy

¢ o

UoISIADI
Echo.h_\.Eu sbeis 509 D co:muw_%,qO soeped O
(o2
MO|PIIOM MO[JoM
jenosddy [enoiddy
- (¥}

() (€)
sjoWwold SIOWOIA Aojdeq

- Cv apod
224n0S
U__:m u- xomco

US 9,454,351 B2

Sheet 3 of 6

Sep. 27, 2016

U.S. Patent

auwies
eroiddo - Jo ~ Ay —— por
7268695450 o
©os0p/Auoyinyuoyonale)
103 TYAOYdAY d04 ONILIVM % % Q
y 0bo syjuow
¥ juswhodep 4sp7 130330008
DuIwIDg /4N /AjLoLnyuoDInIR) o 272
00sep/HuouuONBIToRO
: —GTE
10} IYAOYddY H04 ONILIVM
. 0B syjuow
\ %22 ¥ juswihordep y507 030337908
ounupg/3/Aoyinyuoyoinaipy
obo siuow 22586951750
v Fm«io_%v 1501 Dmommoozm Oo%v\b_._af:«:ozu_:o_co \QNM) \.Q.\MJ G
Posd/yN/AouinyuoloInoIDy 19 TYAOYddV 404 INILIVM Aojppom paosddo up Mo[ppom jpaosddo up o
» 0B syuow obo syuow [PHOM | pPY [PHOM | PPY
¥ Juswrodep 1507 1303300NS ¥ swihoidep 4501 (1303309NS
poid/34/Auoyinyuolipinajoy ouIwng,/1)3/Ajsoyjnyuoyninajo) (Lenouddy] (enouddy]
oBn syjuow CY¥055Y -
7 queuttoidsp 4501 1303300NS o.,___,__ue\a.cgm_@mwﬁmmu og._u\a.cs_m_@mm%_a_a cg._v\a.ce_m_wm_wﬁm._mu il
poad/n3/Kuoynyuoypnainy 403 TYADYdDY 404 ONILIVM 403 TYADYDY d04 ONILIVM 40} TYACHDY ¥04 ONILIVM {proiddo eiinbes jou saop uoyowoig
obo sAop obo sdop ofio sinoy g (nogo ofp sinp ofip
61 juewhodsp js07 (1307390NS 61 juswhodep 4507 1303300NS wswhoidep 4507 1303300NS Iz PIng 01 0303330NS skop 1z ping 1507 130379005
poid/Na/Auoyinyuoljoinajog /PR | pwiwpg/Ng/Auoyjnyuoypinajng v/ #Pe ofog/Ajuoygnyuoypfnojpg |/ HPe oudiy /Ayoyinyuoyopnajey |/ 4p?| oAop/Ajuoyinyuayonajo)
podd [\ pwiwpg N onsQ /A_l d /A_l 1S UOISIOA
758 NCES N7/ 4% Nays

[11p3 |[Asopsiy yipny || eur

swi|[ewi] Ag sseuboiy ebuoyj|[sseibouy mmccr_u__wc__@a_m—

Vi

e

oos—"

US 9,454,351 B2

Sheet 4 of 6

Sep. 27, 2016

U.S. Patent

SO0

—— S0,

/A4

Y98RY@OUIUIDL /BLULUNYIUBIIIDADI SHY
‘awpu Boy juswape joadiod ayy Pupnydono Joy xi4

sosaipb Ag obp syjuow y §108/F@3uljUIOW /[2pON{TY
soboyond zg w1 sebuoyo 78 N

‘aidwos o} wsb sy 186 oy

J3pdo up [}] wegAqnyypodwio]moy U0 SUOLINIISUL BUf PaMO|[0
sloowow Ag ofin syuow g
GLIBBGLOS |0 | ~suowenp—jazpyb /suotanp-jezoyb-wanigny

"aidwoa o} web sy Job o}
Japso up 1] weghgnyypiodwiomoy Uo SUCKINISUL 8L PamO|[o]
sjoowow Aq ofp syjuow g
S 116550¢°0°7-q0["pakojep /qol~pakojep-woaghqny
seboyond 7 w sebuoys 7 m

saboyond g¢ uy ssbubyd pg @

Djag

JoSuOISIap

v oA _ sabuoyo Jaljiy

| up3 [[Asogsiy wpny || aul

owi| [[ewi] g ssesBoig ebupyyl|ssaibosy sbupyg|fauljadig

\\

o0 ——"

US 9,454,351 B2

Sheet 5 of 6

Sep. 27, 2016

U.S. Patent

(/4 4

05~
_ m _ [»]
T T T !
fordec @ " ! " |
625178791 juswhcida; @ ! |
U0} /CB0YRYS) Eme\,oa_wa- " “alluodiAus parosddp upjogleu @ u ..:ozma,, 189678¥91 luewhojde] gl _
upjogieu Aq payips eujipdiy @ _ 0N 40) 189578v9) juswhoida(@ ! | _v
“ _ “ramdopuop ofinjs jusliuoALT @ " “ “upjoglau Ag payps euisdid @
! oW 10y 7295879 uswihoidb) QD ! | _
“ajpJojluOp aBDjs jUBLUCIIALT @ “ppJofiuon 9BDIS JusUDIIAUT | ..._tmm%i_ozcoz 188 U0ISISA @ “apojuop obojs jusluuoliaul @ u
I I I
wo 00:g| wo 0041 wo oo“o" wo 00:¢| !
| Loz ‘g1 Ane
€1 N ‘WY 00:¢) Wy jselupa—
111 — — e
§ 5
S L TS
0/5 — (110108 0} Hoyd) Mapely

00| 86D} yuswuosmuI (] |pacuddy 7] pp3 euledid Y tuewdojeneq/ping B uoisiney Au3/SARY uny deis |paouddy 7] uny mojppopm [oaouddy ()

'UOZOWY (D2O] JNOA UL 2D sawil |y -auledid Unok of psibjed SiUSAD Juddal SapnjOU|

[siuerg maiA __ mTBLSN_ E_ mTB::ow_ wolq

sjusa® mala o} aBups DD D 109]8G

SIUBAT }O auljawWIl]

_%m __\Co*m_x :nwi_m:__m_h;__m&ﬁ Ag ssauboiy wm{o;o__mmm:mo& mmco:o__m::mai_
]

o oc6" 008 </ Lq\\

U.S. Patent Sep. 27, 2016 Sheet 6 of 6 US 9,454,351 B2

7

RECEIVE SOURCE CODE
MODIFICATIONS L~ 605

Y

AUTOMATICALLY BUILD A
SOFTWARE PACKAGE HAVING | ~ 610
THE MODIFICATIONS

'

DEPLOY THE SOFTWARE 615
> PACKAGE TO A TESTING Vsl
ENVIRONMENT

NEW MODIFICATIONS
RECEIVED WHILE
AWAITING APPROVAL

AUTOMATICALLY INTTIATE
ONE OR MORE SOFTWARE | ~ 620
TESTS

625

ADDITIONAL TESTING TESTS
ENVIRONMENTS ASSED?,

YES

DETERMINE IF SOFTWARE | ~ 630 NO
PACKAGE IS APPROVED

|
PACKAGE 'APPROVED

AUTOMATICALLY SELECT A
SOFTWARE PACKAGEFOR | 635
DEPLOYMENT

v

DEPLOY TO A FRODUCTION
ENVIRONMENT

Fig. 6 !

J- 645
OPTIONALLY, DETERMINE IF y
DEPLOYMENT SUCCESSFUL END
AND ROLLBACK IF NOT

US 9,454,351 B2

1
CONTINUOUS DEPLOYMENT SYSTEM FOR
SOFTWARE DEVELOPMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/245,539, filed Sep. 26, 2011, entitled
“Continuous Deployment System for Software Develop-
ment,” which is hereby incorporated by reference herein in
its entirety.

BACKGROUND

More and more companies are now incorporating com-
puters and software services into many facets of their
business. These companies are using software to provide
more and more complex services. The complexity of these
services has, in turn, increased the functionality required
from the software that provides these services. Thus, soft-
ware projects have become more complex and software
development of large applications is typically a lengthy
process, requiring multiple developers many months to
complete development. The increased complexity in the
software development process has made the task of admin-
istering and managing software challenging.

BRIEF DESCRIPTION OF THE DRAWINGS

Throughout the drawings, reference numbers may be
re-used to indicate correspondence between referenced ele-
ments. The drawings are provided to illustrate example
embodiments described herein and are not intended to limit
the scope of the disclosure.

FIG. 1 is a network diagram schematically illustrating an
example of a continuous deployment system that manages
and tracks releases of software code submitted by develop-
ers;

FIG. 2 schematically illustrates a logical flow diagram for
an example software project scenario involving the continu-
ous deployment system of FIG. 1;

FIG. 3 illustrates an embodiment of a pipeline interface
screen to the continuous deployment system of FIG. 1
displaying a pipeline model representing a deployment
process;

FIG. 4 illustrates an embodiment of a change progress
interface screen to the continuous deployment system of
FIG. 1 displaying the progress of the changes to a software
project;

FIG. 5 illustrates an embodiment of a timeline interface
screen to the continuous deployment system of FIG. 1
displaying a timeline visualization of the deployment pro-
cess; and

FIG. 6 schematically illustrates a logical flow diagram for
an embodiment of a software deployment process that can
implemented by the continuous deployment system of FIG.
1.

DETAILED DESCRIPTION
Overview

During software development, the developers make many
changes to the source code. Typically, changes are made to
the source code in batches, with each batch of changes
deployed in a new revision of the code base. Each revision
can be separated from the previous revision by several

25

30

40

45

55

60

2

weeks. As a result, changes made to fix software bugs that
have been found may not be tested in a production envi-
ronment until weeks later, when the problem is no longer
fresh on the developer’s mind. In addition, such changes are
usually made with many other changes, making diagnosing
problems in the production environment more difficult.
Increasing complexity of software may make bugs and
errors in source code more common and harder to diagnose.
Thus, an efficient and streamlined process for deployment of
changes to source code is needed.

Embodiments of a continuous deployment system
(“CDS”) are described below. In one embodiment, a con-
tinuous deployment system is a system that manages and
tracks releases of software code where the steps between
check-in and deployment to production are preferably auto-
mated. This can reduce the amount of developer effort
needed to deploy a package, as developers do not have to be
responsible for scheduling package builds, clicking deploy-
ment buttons or running tests. The automation can take care
of all or some of that work.

Allowing code to be deployed in an automated fashion
allows latency to be reduced from check-in of code to
release of the code to production. Changes can go out to
production as soon as they are ready. For example, delays
due to waiting for people to authorize or initiate code release
can be reduced or eliminated. As a result, customers can get
faster releases of software.

Another potential benefit of some continuous deployment
systems is that a fast cycle time for getting changes to
production allows bug fixes or patches to quickly get into
production. Under non-continuous deployment systems,
typically a special patch version would be created to leave
out changes that aren’t yet ready for production, however,
the continuous deployment system allows bug fixes to be
treated like any other code change, allowing the bug fix to
be checked in and to go into production.

As changes can go out more frequently, deployments
usually can be smaller, containing a small number of
changes. Thus, debugging can be easier, as there are fewer
potential causes of bugs. Further, since changes can go out
more frequently and in smaller batches, if bugs are intro-
duced, failure of the code will happen faster and bugs can be
caught sooner, when the code is still fresh in the developers
mind. This can make it easier to find and fix bugs.

Further, in one embodiment, the continuous deployment
system allows a release process to be defined and applied to
all or selected future code changes. The same tests and
process can be applied to each code, building consistency in
the process. For example, a test can be written that checks
that a particular bug has been fired, and that test can be run
for all subsequent code changes. By re-running the test on
new code changes, the continuous deployment system can
check that those code changes do not reintroduce the same
bug. Further, improvements can be added to the process to
allow best practices to be implemented, allowing the process
to continually evolve and improve.

In one embodiment, the continuous deployment system
allows a user to define a release process that can be visu-
alized and automated. The continuous deployment system
can represent the release as a pipeline to the user, with the
pipeline having multiple stages and promotion configura-
tions defining how promotions occur between stages. The
promotion configurations can define requirements or
instructions for passing to the next stage (e.g. build to an
application, deploy to a first environment, promote from
Alpha to Development stage or the like). The continuous
deployment system can allow users to set up automated test

US 9,454,351 B2

3

workflows to verify and approve the changes at each stage.
Then the promotion configuration moves the latest approved
changes to the next stage in the pipeline.

Various aspects of the disclosure will now be described
with regard to certain examples and embodiments, which are
intended to illustrate but not to limit the disclosure. Nothing
in this disclosure is intended to imply that any particular
feature or characteristic of the disclosed embodiments is
essential. The scope of protection of certain inventions is
defined by the claims.

Examples of Continuous Deployment Systems

FIG. 1 is a network diagram schematically illustrating an
example of a continuous deployment system (“CDS”) 100
that manages and tracks releases of software code submitted
by developers. In the illustrated embodiment of FIG. 1, the
continuous deployment system 100 communicates with
developer computing systems 105 using a network 110. The
continuous deployment system 100 can receive source code
changes from the developer computing systems 105, gen-
erate source code packages, and deploy the packages.

The continuous deployment system 100 can include any
system capable of receiving source code changes and
deploying those code changes onto deployment environ-
ments. The continuous deployment system 100 can include
a CDS interface 115, which can include one or more servers
(e.g., a web server) configured to receive and respond to
requests from the developer systems 105. The continuous
deployment system 100 can also include storage nodes 120
for storing source code related data (e.g., code changes, code
versions, versioning data, change history, code backups,
code metadata, developer identifications, continuous
deployment system events or the like). Other services may
also be provided by the continuous deployment system 100.
The storage nodes 120 may comprise any type of persistent
data storage, for example non-volatile memory devices such
as, e.g., hard disk drives, optical disk drives, etc.

Developers, using their computing systems 105, can
develop applications and submit source code for those
applications to the continuous deployment system 100,
which can track and monitor such source code. The devel-
oper computing systems 105 can include wireless mobile
devices (such as smart phones, PDAs, tablets or the like),
desktops and laptops, to name a few. Changes to the source
code can be received by the continuous deployment system
100, which can then generate packages to be applied to an
existing code base deployed on deployment environments
125.

Typically, a deployment environment 125 can include one
or more computing systems capable of running the software
packages built from the source code. In one embodiment, the
deployment environment 125 can include one or more
computing nodes configured to emulate computer hardware
of the production environment. For example, the continuous
deployment system 100 can use one or more computing
nodes or testing modules 127 that can execute and test
software programs. The computing nodes or testing modules
may comprise one or more physical computing systems
and/or one or more virtual machines instances that are
hosted on one or more physical computing systems. For
example, a host computing system may provide multiple
virtual machines instances and include a virtual machine
(“VM”) manager to manage those virtual machines (e.g., a
hypervisor or other virtual machine monitor). In one
embodiment, the testing modules 127 can be internal or
external systems capable of running one or more tests on the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

software packages operating on the deployment environ-
ment 125. In some embodiments, the deployment environ-
ment may only partially simulate the production environ-
ment, for example, if only limited testing is being conducted
or if simulating the production environment is not otherwise
needed.

A CDS manager 130 may monitor, track and/or manage
the processes of the continuous deployment system 100. The
CDS manager 130 can be in communication with other
components of the continuous deployment system 100 via a
network 135. In the example illustrated in FIG. 1, the CDS
manager can access the CDS interface 115, storage nodes
120, and deployment environments 125 via the network 135.
The network 135 may include multiple networking devices
(not shown) such as, e.g., switches, edge routers, core
routers, etc. The network 135 may, but need not be, a
different network than the network 110 shown in FIG. 1.

In some embodiments, the continuous deployment system
100 and its components are executed or embodied by one or
more physical or virtual computing systems. For example, in
some embodiments, a server computing system that has
components including a central processing unit (CPU),
input/output (I/0) components, storage, and memory may be
used to execute some or all of the components of the
continuous deployment system 100 such as, e.g., the CDS
manager 130. The /O components include a display, a
network connection to the network 135, a computer-read-
able media drive, and other I/O devices (e.g., a keyboard, a
mouse, speakers, etc.). An embodiment of the continuous
deployment system 100 can be stored as one or more
executable program modules in the memory of the server,
and the continuous deployment system 100 can interact with
computing nodes (e.g., physical computing systems and/or
virtual machine instances) over the network 135. In one
embodiment, the continuous deployment system 100 may
have additional components or fewer components than
described above. For example, the continuous deployment
system 100 may be built on top of existing software devel-
opment or testing systems and designed to coordinate the
actions of the existing systems.

FIG. 2 schematically illustrates a logical flow diagram for
an example software project scenario. In some implemen-
tations, services are provided by embodiments of the con-
tinuous deployment system 100 described with reference to
FIG. 1 or by one of its components, such as the CDS
interface 115 or CDS manager 130. For ease of explanation,
the following describes the services as performed by the
continuous deployment system 100. The example scenario is
intended to illustrate, but not to limit, various aspects of the
continuous deployment system 100. As illustrated in FIG. 2
and further described below, the following events occur
during the example scenario:

1. Source code changes are checked in to a package

(and/or branch).

2. Packages are built into an application.

3. The application is deployed to a CDS stage (e.g.,
deployment environment), the packages of which form
an environment revision.

4. An Approval Workflow tests the environment revision.

5. If the Approval Workflow is successful, the environ-
ment revision is marked as “Approved”. The latest
approved environment revision is promoted to the next
stage.

6. An Approval Workflow can contain separate configu-
rable steps. The final step can be a manual approval
button.

US 9,454,351 B2

5

7. An approved environment revision (e.g., the latest) is

promoted to the production stage.

At event 1, source code changes are submitted to the
continuous deployment system 100. The continuous deploy-
ment system 100 can check in the source code changes to a
package (and/or release branch). The continuous deploy-
ment system 100 can receive the source code changes on an
interface, such as an application interface (e.g., a web
server), an Application Programming Interface (API), a user
interface, or other type of interface. The source code changes
can be saved onto a storage node 120 for the source code.

At event 2, packages are built into an application. In one
embodiment, the application is a revision controlled depen-
dency closure that includes all the other software packages
depended upon by the modified source code to function.
Generally, a revision is a set of changes. Software packages
having changes are built into an application to create an
application revision. For example, there could be revisions
1.0 and 1.1 of an application of the same set of source code,
with the revisions being different from each other because of
changes implemented in the source code. An application
revision deployed to an environment creates an environment
revision in some embodiments.

Specific versions of the other software packages can be
included in the application to allow more consistent behav-
ior of the software. For example, if modified package A has
dependencies for particular versions of package B and
package C, then those versions of package B and C can be
included into the application.

At event 3, the application is deployed to a CDS stage
(referred to as “Alpha” in FIG. 2). The CDS stage can
include one or more deployment environments 125, such as
a testing environment that simulates the operation of a
production environment. There may be other packages that
were deployed separately to the CDS stage that, together
with the deployed application, constitutes an environment
revision in the example shown in FIG. 2. For example, the
other packages may have been deployed by another devel-
oper or by the same developer at a different time. There can
be multiple applications of the software project in the Alpha
stage, for example, if a software project includes multiple,
independently functioning sets of packages or if different
revisions of the same application have been deployed. There
may also be multiple versions sets corresponding to different
versions of the same packages or sets of packages. For
example, there may be a version 1.0 and a version 1.1 (e.g.,
a different source code fork) of a package on the Alpha Stage
at the same time.

At event 4 of FIG. 2, an approval workflow is used to test
the environment revision. Generally, the approval workflow
includes the set of steps used to verify that a revision is
approved. The approval workflow can be run whenever a
new revision shows up in a stage.

The approval workflow can include automated tests for
the environment revision. For example, test programs or test
scripts can be run against the environment revision to test the
behavior of the environment revision. Multiple tests can be
run to test particular functionality or to verify that previous
bugs have not been reintroduced. In one embodiment, the
approval workflow contains separate configurable steps.
Each step can correspond to a discrete test. The final step (or
other steps) can request a manual approval or other manual
action. For example, the approval workflow may require that
an administrator, developer, project leader or other user of
the continuous deployment system 100 to approve the
promotion to the next stage, for example, by pressing an
approve button.

25

35

40

45

6

In one embodiment, the approval workflow is applied
automatically to the environment revision during its deploy-
ment to the CDS stage or during the deployment of packages
in the environment revision. In some embodiments, the
approval workflow may be applied according to a schedule.
For example, the approval workflow can be run during times
of'less activity, such as at night or on the weekends, in order
to keep the responsiveness and/or performance of the con-
tinuous deployment system 100 high during busier times.

At event 5, if the approval workflow is passed and the
environment revision is approved (automatically or manu-
ally), the environment revision is promoted to the next CDS
stage (referred to as “Beta” in FIG. 2). This stage can include
different approval workflows and/or different deployment
environments. For example, the Beta stage may have
deployment environments that are configured to more
closely match or duplicate the production environment than
Alpha. In another example, the Beta stage may include all or
most of the packages for the final software release, thereby
allowing a more thorough or complete testing of the pack-
ages, for example, by allowing testing of the interactions
between all the different packages.

At event 6, a second approval workflow is applied to the
environment revision. In some embodiments, the promotion
to the destination (e.g., the production environment) may
require manual approval. For example, automated tests may
be performed and, if passed, the continuous deployment
system 100 can then notify the user in charge of the software
release that the release is ready for deployment. The user can
then manually approve the deployment. By providing a
mechanism for manual approval, the continuous deployment
system 100 system can allow gradual adoption of automa-
tion, allowing users to gain confidence in their automated
tests and procedures.

At event 7, an approved revision is promoted to the
production stage (referred to as “Production” in FIG. 2). The
promotion may be initiated by a manual approval, a timer,
a scheduled event, a time window or other deployment
conditions being satisfied. In some situations, there may be
multiple revision sets that have been approved on the Beta
stage. For example, while the continuous deployment sys-
tem 100 is waiting for deployment approval, other revisions
may have been promoted to the Beta stage. Thus, there can
be multiple revisions from the same source (e.g., applica-
tions or packages) qualified for promotion.

In some embodiments, the continuous deployment system
100 determines which environment revision to promote,
such as the latest approved revision. For example, the
continuous deployment system 100 may examine the source
code files of the revisions to determine which files were
submitted last and promote the revision with the newest
files. In another example, the revisions may be tagged or
associated with a revision number or identifier, and the
continuous deployment system 100 promotes the revision
with the highest number or a revision specified as a priority
revision. In another example, the revisions may be promoted
based on the number of tests passed during testing or the
performance of the revisions during testing. In one embodi-
ment, if the destination of a promotion is out of sync with the
latest approved revision of its source, then that latest revi-
sion is promoted to the destination, thereby updating the
destination stage. In some situations, the promotion desti-
nation for a revision may have other applications or pack-
ages for a different version (e.g., older version) of the
software project than the revision. In those situations, the
continuous deployment system 100 can promote the appli-
cation for the same revision as the applications on the

US 9,454,351 B2

7

destination. For example, if the source stage has approved
application A, revision 1.1 and revision 1.2 and the desti-
nation stage has application B, revision 1.1, then the con-
tinuous deployment system 100 can promote application A,
revision 1.1, since it corresponds with the application B on
the destination stage. This can be beneficial since different
revisions may not be compatible, for example, if certain
functionality was implemented in the newer revision that
wasn’t implemented in the older revision.

In some embodiments, promotions between stages are
handled by automation agents or software modules or pro-
cesses. In some such embodiments, the agents may operate
in the background. For example, there may be AutoBuild,
AutoPromote, and AutoDeploy agents. The user can inter-
face with those agents in order to approve promotions. The
user can also configure those agents to setup promotion
configurations which define which sources promote to which
destinations.

In one embodiment, the AutoBuild agent watches for new
changes in package branches or other source code collec-
tions, then triggers builds into applications. For example, the
AutoBuild agent can check the date stamps of files to
identify changes or search for files that have been marked as
changed. Once built, the applications can be treated as
normal package builds submitted by a developer. In one
embodiment, the AutoBuild agent is configured to automati-
cally build an application when a developer checks-in a
change to a package associated with AutoBuild. In one
embodiment, the user can determine and select which pack-
ages the AutoBuild agent is associated with and disable or
enable monitoring by the AutoBuild agent on a per package
basis.

In one embodiment, the AutoBuild agent can check for
changes after an interval of time has passed (e.g., every
minute or every hour). If the AutoBuild agent detects
multiple package changes in the same application, the Auto-
Build agent can group the package changes into one build
request. In one embodiment, if a build submitted by the
AutoBuild agent fails, the agent will retry building when
new changes are received.

In one embodiment, if the AutoDeploy agent sees a
deployment environment is out of sync with a application on
the CDS stage associated with the deployment environment,
the agent triggers a deployment. For example, if application
revision 1.1 has been promoted to the CDS stage but only
revision 1.0 is on the deployment environments, the
AutoDeploy agent can update the deployment environments
with revision 1.1. In one embodiment, deployments of an
application to the first CDS stage in a pipeline does not
require an approval (e.g., a new application revision build-
ing successfully counts as the approval to deploy) but an
approval workflow can be added to perform additional
verification before deploying.

In one embodiment, if the AutoPromote agent sees a
deployment environment (e.g., in Beta stage) out of sync
with the latest approved version of its source deployment
environment (e.g., in Alpha stage) from which the deploy-
ment environment receives software packages, it creates a
promotion deployment. Approval for the promotion can be
granted automatically based on passing an approval work-
flow or manually by a human. If no approval workflow is
configured, the continuous deployment system 100 can wait
for manual approval. Once approved, the AutoPromote
agent causes the latest approved version to deploy into the
deployment environment.

Promotions to stages may require approval in some
embodiments but not in others. In some embodiments, if the

10

15

20

25

30

35

40

45

50

55

60

65

8

promotion configuration is disabled or automation is off,
nothing will be promoted automatically. Likewise, if there is
a time window defining times when promotions can take
place that is associated with the promotion configuration and
that time window is closed, automated actions will hold off
until the window opens. Time windows can be useful in
controlling when promotions take place. For example, pro-
motions to production could be scheduled in times of low
usage, such as after midnight, where problems would have
limited effect on users.

Promotion configurations can form a graph or associa-
tions between all the applications and environments in a
pipeline. In one embodiment, while applications and envi-
ronments are grouped into CDS stages for display purposes
(e.g., on a pipeline model display), promotions are still
configured on a per application and/or per deployment
environment basis. In one embodiment, each application or
deployment environment can only be the destination of one
promotion, but each application or deployment environment
can be the source of multiple promotions. For example, the
application from MyVS/mainline could be deployed to
MyEnv/Beta, but MyEnv/Beta could be configured to
deploy to multiple deployment environments: MyEnv/NA/
Prod, MyEnv/EU/Prod, and MyEnv/FE/Prod. All of the
deployment environments could then receive promoted revi-
sions when a new version of MyEnv/Beta was approved
(though deployment of the new version may wait for time
windows if they are configured or implemented in the
system).

In other embodiments, the continuous deployment pro-
cess may be fully automated. For example, once software
packages are submitted to the continuous deployment sys-
tem 100 by a developer, the continuous deployment system
100 automatically builds an application, deploys the appli-
cation to an environment revision, and promotes the envi-
ronment revision through the different stages if the approval
workflows are satisfied. In cases where multiple revisions of
the software packages exist, the continuous deployment
system 100 can automatically select one of the multiple
revisions to promote, as described above.

Other embodiments of the continuous deployment system
100 are also possible. For example, while FIG. 2 illustrates
a 3 stage pipeline for a particular software release, pipelines
could have additional or lesser number of CDS stages. In
some embodiments, promotions may be handled with finer
granularity. For example, the continuous deployment system
100 may promote package revisions or application revisions
rather than, or in addition to, promoting by environment
revisions.

In one embodiment, the user can specify time windows
for when the continuous deployment system 100 is allowed
to automatically create deployments. These time windows
can be added on a per environment basis, allowing multiple
time windows for each stage. The continuous deployment
system 100 will then begin a deployment only when the time
window is open for the environment.

FIG. 3 illustrates an embodiment of a pipeline interface
screen 300 to the continuous deployment system 100 dis-
playing a pipeline model representing a deployment process.
The pipeline model 305 represents the path that source code
takes, from check in of changes to deployment to produc-
tion. The pipeline interface screen 300 allows a user to
define the release process for a particular software project.
It provides a visual representation of the release process and
the changes flowing through it.

The pipeline 305 can include one or more CDS stages.
The stages represent destinations that, in one embodiment,

US 9,454,351 B2

9

get the same changes at the same time. In FIG. 3, the
pipeline 305 includes a application stage 310, three testing
stages (referred to as “PIE” 315, “Devo” 320, and “Gamma”
325 in FIG. 3) and one production stage (referred to as
“Prod” 330). Since a CDS stage can be a logical grouping,
a stage can contain multiple applications and/or multiple
environments. For example, the Prod stage can contain
multiple deployment environments. As illustrated in FIG. 3,
the Gamma stage has 4 possible destination environments
(CN, EU, FE, and NA). The promotions to each destination
can be processed by the continuous deployment system 100
independently. For example, the continuous deployment
system 100 can request independent approval for deploy-
ments to each destination.

In one embodiment, CDS stages (or deployment environ-
ments) can be locked in order to prevent new deployments
to the CDS stage from starting. This keeps the CDS stage
from changing while the lock is held. Typically, an approval
workflow will begin by locking the stage on which it is
running. This helps to ensure that tests are run against a
consistent set of software and that any approvals granted by
the workflow are valid.

The promotion configurations are represented by the
connections arrows 335, 340, 345, 350 between adjacent
stages in a pipeline. Promotions describe where changes will
go next. Promotions can be set per versions set and/or per
destination environment. For example, separate promotion
configurations can be set for each environment in a stage.
Thus, in one embodiment, promotions can be independently
determined. By clicking on one of the correction arrows 335,
340, 345, 350, the user can specify the promotions require-
ments between stages. A user interacting with the pipeline
interface screen 300 can add an approval workflow 355, edit
promotion configurations and approve promotions 360 to
the next stage by interacting with the screen (e.g., selecting
links or buttons, etc.).

Indicators in the pipeline screen can be used by the
continuous deployment system 100 to indicate the status of
different parts of the system. For example, a lock indicator
can indicate than an environment is locked. A window
indicator can indicate that a time window is open or closed
for an environment. Additional or different indicators can
also be used.

FIG. 4 illustrates an embodiment of a change progress
interface screen 400 to the continuous deployment system
100 displaying the progress of the changes to a software
project. In one embodiment, changes can be grouped by
progress. The groups can be sorted by package name or
chronologically. The progress interface screen 400 can dis-
play the number of changes made in the package, when the
changes were made, who made the changes, and what
changes were made. For example, the screen 400 can
include progress bars 405 that show where changes have
been made during the continuous deployment stages (e.g.,
changes to an application and/or to a Beta stage). The user
can manipulate the screen 400 to show different views, for
example, by filtering the displayed data.

FIG. 5 illustrates an embodiment of a timeline interface
screen 500 to the continuous deployment system 100 dis-
playing a timeline visualization of the deployment process.
The user can see a representation of events 505 that have
occurred in the continuous deployment system 100. This can
be useful for determining what was happening when a
problem occurred. In some embodiments, the representa-
tions of different events can be color-coded, shaded,
hatched, or highlighted so that a user can readily distinguish
the different events that have occurred. The timeline can

20

30

35

40

45

10

display events such as an approval workflow run, a work-
flow step run, a virtual set or environment revision, building
or deployment of a revision or package, editing of the
pipeline, approval of a promotion, locking of a CDS stage,
or other continuous deployment system 100 event. The
events may be displayed along a timeline, which the user can
manipulate to display different times in different views (e.g.,
by scrolling).

The CDS interface can include additional screens to
display additional information to users. For example, the
CDS interface shown in FIGS. 3, 4, and 5 includes tabbed
pages by which a user can view the progress of changes 515
to the software project by time, an audit history of changes
520 to a pipeline’s configuration, and edits made to the
software project 525. In some implementations, the change
progress by time interface takes all the “in-flight” changes
and orders them from most recently checked-in to oldest
checked-in change. In some such implementations, in-flight
changes represent changes that have not been deployed to a
whole pipeline (e.g., deployed to every stage in the pipeline)
or changes that were made within a particular time period
(e.g., the last 36 hours). In some implementations, the audit
interface displays who made a change to pipeline the con-
figuration and when the change was made. The audit inter-
face may permit disabling or enabling the pipeline or
changing promotion configurations. The audit interface
advantageously may be used to determine when something
changed and who made the change. Additional or different
interface display pages can be used in other embodiments.

Notifications (e.g., e-mails, text messages, etc.) may be
sent to users of the CDS 100 when various events occur. The
events can include: a new revision of an environment or
application that requires manual approval, when a pipeline
is deleted, disabled, or re-enabled, when an automation state
of a pipeline’s promotions is changed, when an approval
workflow fails, or when an automated deployment fails.
Notifications can be set for other events.

In some embodiments of the CDS system 100, compli-
ance management can be implemented by the CDS manager
130. For example, compliance can include auditing, due
diligence, and/or compliance with industry best practices or
regulations. For example, a software compliance policy may
be used to implement medical privacy standards under the
Health Insurance Portability and Accountability Act
(HIPAA), corporate accounting standards under the Sar-
banes-Oxley act (SOX), fraud prevention standards under
the Payment Card Industry (PCI) data security standards,
information security standards under the Federal Informa-
tion Security Management Act (FISMA), and so forth. In
some embodiments, the CDS system 100 can monitor
whether a particular software revision has been approved as
complying with a compliance policy applicable to the soft-
ware. In some such embodiments, the CDS system 100 will
not promote the revision to the next stage in the pipeline
until a compliance approval is received. The compliance
approval process may be automated (e.g., the revision is
passed by a compliance module) or may be manual (e.g., a
human manager has signed off on the revision).

FIG. 6 schematically illustrates a logical flow diagram for
an embodiment of a software deployment process 600. In
some implementations, services are provided by embodi-
ments the continuous deployment system 100 described
with reference to FIG. 1 or by one of its components, such
as the CDS interface 115 or CDS manager 130. For ease of
explanation, the following describes the services as per-
formed by the continuous deployment system 100. The
example scenario is intended to illustrate, but not to limit,

US 9,454,351 B2

11

various aspects of the continuous deployment system 100.
For example, the process described in the flow diagram may
be accomplished using several workflows instead of one
workflow. In one embodiment, the process can be fully
dynamic, with some procedures omitted and others added. In
one example, multiple instances of the process may be
occurring concurrently, for different source code submis-
sions.

Beginning at block 605, the continuous deployment sys-
tem 100 receives source code modifications for a software
project from a developer. The modifications can be received
on the CDS interface 115 of FIG. 1 from a developer
computing system 105 of FIG. 1. The software project can
have many packages and the source code modifications may
be only for one or a few of the packages.

At block 610, the continuous deployment system 100
automatically builds a software package having the modi-
fications. The continuous deployment system 100 may also
build the package into an application and deploy the soft-
ware package as part of the application. If the package build
is successtul, the deployment process proceeds to block 615.
In some situations, the build may fail and the continuous
deployment system 100 may then notify a user that the build
failed. The continuous deployment system 100 may then end
the deployment process 600.

At block 615, the continuous deployment system 100
deploys the software package to a testing environment 125,
which can be a deployment environment of a CDS stage 325
described in FIG. 3. In some situations, there may be
multiple deployment environments and the continuous
deployment system 100 can deploy the software package to
one, all or a selection of the deployment environments. In
one embodiment, the continuous deployment system 100
deploys the software package according to the promotion
configuration settings provided by the user.

At block 620, the continuous deployment system 100
automatically initiates one or more software tests of the
software package. Typically, during software development,
developers create many software tests for an application.
Such tests can check whether functionality provided by the
code is working correctly, whether known bugs have been
reintroduced, whether the performance of the application is
within the desired parameters, and whether the results pro-
vided by the application are correct. In one embodiment,
these software tests are organized by the continuous deploy-
ment system 100 into an approval workflow. Such an
approval workflow can include the tests as well as other
criteria that need to be met before the software package is
approved. While running the tests, the continuous deploy-
ment system 100 can lock the CDS stage to prevent new
deployments to the CDS stage from starting, thereby keep-
ing the code base consistent during testing.

At block 625, the continuous deployment system 100
determines whether the one or more software tests have been
passed (e.g., functionality tests, bug tests, performance tests,
compliance tests, etc.). If the tests were not passed, the
continuous deployment system 100 can end the deployment
process 600. If the tests were passed, the deployment
process proceeds to block 630. In some embodiments, the
deployment process may proceed to block 630 even if some
of the tests were not passed. For example, if the software
package is functioning correctly but is not yet meeting
desired performance criteria, the continuous deployment
system 100 may proceed with the deployment.

In one embodiment, the continuous deployment system
100 can report the results of the tests to the user so that the
user can know how the software package performed on the

5

10

15

20

25

30

35

40

45

50

55

60

65

12

one or more software tests. For example, the continuous
deployment system 100 may provide interactive feedback to
the user including, for example, indications of when and/or
for how long software tests will run and provide a real-time
or near real-time status of the tests (or other parts of the
deployment process 600). In some embodiments, the con-
tinuous deployment system 100 can generate a report detail-
ing or summarizing the usage testing results and communi-
cate the report to the user via electronic mail or provide
access to the report, deployment status, or interactive feed-
back via Web services. For example, the continuous deploy-
ment system 100 may provide interactive and information
screens such as those described in FIGS. 3-5. The continu-
ous deployment system 100 can also include other screens,
such as a change progress by time, audit history, or edit
screen as described above.

At block 630, the continuous deployment system 100
determines if the software package is approved. Such
approval may be provided automatically or manually. Auto-
matic approval may be granted if the one or more software
tests are passed. In some cases, the continuous deployment
system 100 may be configured to delay approving the
software package until certain criteria are met, such as
waiting for a particular time or waiting for a scheduled event
to occur. In some embodiments, the continuous deployment
system 100 may be configured to request manual approval
from the user. In those embodiments, the continuous deploy-
ment system 100 can designate the software package as
ready for approval, notify the user the packages status, and
await approval.

If new modifications are received while the continuous
deployment system 100 is awaiting approval for the soft-
ware package, the deployment process can proceed back to
block 605 and process the new software package. The new
software package would then proceed as described above
until the deployment process 600 again reaches block 630.
Thus, in some situations, there can be times when multiple
packages are awaiting approval at block 630. In some
situations, the new modifications can be received during
other times in the process (e.g., at other blocks). If one or
more software packages are approved, the deployment pro-
cess can proceed to block 635.

At block 635, the continuous deployment system 100
automatically selects a software package for deployment. If
there’s only a single package ready for approval, then the
continuous deployment system 100 selects that package for
deployment to the next destination environment. If there are
multiple software packages, then the continuous deployment
system 100 determines which software packages to send to
the next destination. For example, if there are multiple
revisions of the same software package ready for deploy-
ment, the continuous deployment system 100 can pick the
latest revision. The continuous deployment system 100 can
pick which software package out of a plurality of packages
to deploy based on the revision number, what software
revisions are found on the destination environment, by
revision priority, by the author of the changes, by a pre-
determined priority list, or by other selection criteria.

After selecting the software package (or packages) to
deploy, the continuous deployment system 100 then deploys
the software package to the destination environment. The
destination environment could be a second testing environ-
ment (or third, fourth, etc.) or a production environment. If
the destination is another testing environment, the deploy-
ment process 300 can proceed back to block 615 and repeat

US 9,454,351 B2

13

part of the process 300 described above. If the destination is
aproduction environment, the process 300 proceeds to block
640.

At block 640, the continuous deployment system 100
deploys the software package to the production environ-
ment, which can be a deployment environment of a CDS
stage 330 described in FIG. 3. In some situations, there may
be multiple deployment environments and the continuous
deployment system 100 can deploy the software package to
one, all or a selection of the deployment environments. In
one embodiment, the continuous deployment system 100
deploys the software package according to the promotion
configuration settings provided by the user.

At block 645, the continuous deployment system 100
optionally determines if the deployment was successful and
can rollback the deployment if it was not. During the
deployment process, the continuous deployment system 100
can record rollback data, such as the version of the previous
software package being replaced with the new software
package and/or other data for rolling back a deployment. For
example, in response to a triggering even, such as failure or
error in the deployment environment, the continuous
deployment system 100 can rollback to the previously
deployed software package or otherwise return the deploy-
ment environment to the state it was in before the deploy-
ment. The rollback process (or the determination whether to
rollback) may be initiated automatically or manually. After
deploying the software package or rolling back the deploy-
ment, if needed, the deployment process 600 can end.

As described above, the continuous deployment system
100 can be implemented with one or more physical servers
or computing machines, such as several computing
machines interconnected via a network. Thus, each of the
components depicted in the continuous deployment system
100 can include hardware and/or software for performing
various features. In one embodiment, the continuous deploy-
ment system 100 is a web site or collection of web sites.

Like the continuous deployment system 100, developer
computing systems 105 can be implemented in hardware
and can include any type of computing device. The devel-
oper systems 105 can, but need not be, operated by entities
who are different from one another and who are different
from a user of the continuous deployment system 100. For
example, the continuous deployment system 100 may be a
web service made available to 3rd party developers by a web
services provider for a fee or for free.

The continuous deployment system 100 can include one
or more servers for receiving and responding to network
requests from the developer computing devices 105. The one
or more servers can include web servers, application servers,
database servers, combinations of the same, or the like. In
some embodiments, the network 110 is a publicly accessible
network of linked networks, possibly operated by various
distinct parties, such as the Internet. In other embodiments,
the network 110 may be a private network, such as, for
example, a corporate or university network that is wholly or
partially inaccessible to non-privileged users. In still other
embodiments, the network 110 may include one or more
private networks with access to and/or from the Internet.

The processing of the various components of the continu-
ous deployment system 100 can be distributed across mul-
tiple machines, networks, and other computing resources.
The various components of the continuous deployment
system 100 can also be implemented in one or more virtual
machines, rather than in dedicated servers. Likewise, the
data repositories shown can represent physical and/or logical
data storage, including, for example, storage area networks

10

20

25

30

35

40

45

50

55

60

65

14

or other distributed storage systems. Moreover, in some
embodiments the connections between the components
shown represent possible paths of data flow, rather than
actual connections between hardware. While some examples
of possible connections are shown, any of the subset of the
components shown can communicate with any other subset
of components in various implementations.

In some embodiments, the continuous deployment system
100 may be configured differently than illustrated in the
figures above. For example, various functionalities provided
by the illustrated modules can be combined, rearranged,
added, or deleted. In some embodiments, additional or
different processors or modules may perform some or all of
the functionalities described with reference to the example
embodiment illustrated in the figures above. Many imple-
mentation variations are possible.

Other types of programmatic interactions (additionally or
alternatively) between the continuous deployment system
100 and the developer computing systems 105 are possible
in addition to those described above. For example, a CDS
submission or command be received directly from a user
(e.g., via an interactive console or other GUI provided by the
continuous deployment system 100) or from an executing
program on a developer computing device 105. In some
embodiments, users may interact with the continuous
deployment system 100 using other types of interfaces and
in other ways. For example, the continuous deployment
system 100 may provide a web services interface (e.g., a
web page or set of web pages) that allows a user to submit
a request using a web browser. Other types of interfaces may
also be used.

In some embodiments, a server computing system that has
components including a central processing unit (CPU),
input/output (I/0) components, storage, and memory may be
used to execute the continuous deployment system 100 or
specific components of the continuous deployment system
100. The executable code modules of the continuous deploy-
ment system 100 can be stored in the memory of the server
and/or on other types of non-transitory computer-readable
storage media. In some embodiments, the continuous
deployment system 100 may be configured differently than
described above.

Each of the processes, methods, and algorithms described
in the preceding sections may be embodied in, and fully or
partially automated by, code modules executed by one or
more computers, computer processors, or machines config-
ured to execute computer instructions. The code modules
may be stored on any type of non-transitory computer-
readable medium or tangible computer storage device, such
as hard drives, solid state memory, optical disc, and/or the
like. The systems and modules may also be transmitted as
generated data signals (e.g., as part of a carrier wave or other
analog or digital propagated signal) on a variety of com-
puter-readable transmission mediums, including wireless-
based and wired/cable-based mediums, and may take a
variety of forms (e.g., as part of a single or multiplexed
analog signal, or as multiple discrete digital packets or
frames). The processes and algorithms may be implemented
partially or wholly in application-specific circuitry. The
results of the disclosed processes and process steps may be
stored, persistently or otherwise, in any type of non-transi-
tory computer storage such as, e.g., volatile or non-volatile
storage.

The various features and processes described above may
be used independently of one another, or may be combined
in various ways. All possible combinations and subcombi-
nations are intended to fall within the scope of this disclo-

US 9,454,351 B2

15

sure. In addition, certain method, event or process blocks
may be omitted in some implementations. The methods and
processes described herein are also not limited to any
particular sequence, and the blocks or states relating thereto
can be performed in other sequences that are appropriate.
For example, described tasks or events may be performed in
an order other than that specifically disclosed, or multiple
may be combined in a single block or state. The example
tasks or events may be performed in serial, in parallel, or in
some other manner. Tasks or events may be added to or
removed from the disclosed example embodiments. The
example systems and components described herein may be
configured differently than described. For example, ele-
ments may be added to, removed from, or rearranged
compared to the disclosed example embodiments.
Conditional language used herein, such as, among others,
can,” “could,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, is generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements and/or steps. Thus,
such conditional language is not generally intended to imply
that features, elements and/or steps are in any way required
for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
author input or prompting, whether these features, elements
and/or steps are included or are to be performed in any
particular embodiment. The terms “comprising,” “includ-
ing,” “having,” and the like are synonymous and are used
inclusively, in an open-ended fashion, and do not exclude
additional elements, features, acts, operations, and so forth.
Also, the term “or” is used in its inclusive sense (and not in
its exclusive sense) so that when used, for example, to
connect a list of elements, the term “or” means one, some,
or all of the elements in the list. Conjunctive language such
as the phrase “at least one of X, Y and Z,” unless specifically
stated otherwise, is otherwise understood with the context as
used in general to convey that an item, term, etc. may be
either X, Y or Z. Thus, such conjunctive language is not
generally intended to imply that certain embodiments
require at least one of X, at least one of Y and at least one
of Z to each be present
While certain example embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inventions
disclosed herein. Thus, nothing in the foregoing description
is intended to imply that any particular feature, character-
istic, step, module, or block is necessary or indispensable.
Indeed, the novel methods and systems described herein
may be embodied in a variety of other forms; furthermore,
various omissions, substitutions and changes in the form of
the methods and systems described herein may be made
without departing from the spirit of the inventions disclosed
herein.
What is claimed is:
1. A method for deploying software, the method compris-
ing:
under control of a continuous deployment system com-
prising computing hardware:
receiving first source code modifications to a source code
package;
automatically building a first software package of the
source code package having the first source code modi-
fications, the first software package comprising execut-
able program instructions;
receiving second source code modifications to the source
code package;

113

10

15

20

25

30

35

40

45

50

55

60

65

16

automatically building a second software package of the
source code package having the second source code
modifications, the second software package comprising
executable program instructions;

selecting the first software package for promotion from a

source stage to a destination stage, wherein the first
software package and the second software package are
included on the source stage and approved for promo-
tion to the destination stage, and wherein the first
software package is compatible with a third software
package included on the destination stage;
automatically initiating one or more software tests against
the first software package to determine whether to
deploy the first software package, wherein automati-
cally initiating one or more software tests comprises
locking a testing environment on which the first soft-
ware package operating to prevent additional deploy-
ments to the testing environment during testing;

approving the first software package for promotion to a

deployment environment when the one or more soft-
ware tests are passed by the first software package,
wherein the deployment environment comprises com-
puter hardware and wherein the first software package
is promoted through a plurality of stages prior to the
promotion to the deployment environment; and

in response to approving the first software package,

causing the first software package to be deployed to the
deployment environment.

2. The method of claim 1, wherein causing the first
software package to be deployed comprises:

determining a time window operative on the first software

package; and

deploying the first software package during a time when

the time window is open.

3. The method of claim 1, further comprising automati-
cally rolling back to a previously deployed version of the
first software package when the one or more software tests
are failed by the first software package.

4. The method of claim 1, the method further comprising:
approving the second software package for promotion to the
deployment environment when the one or more software
tests are passed by the second software package, where in
the second software package is promoted through the plu-
rality of stages prior to the promotion to the deployment
environment.

5. The method of claim 4, wherein the first software
package and the second software package are built into a
first application and a second application.

6. The method of claim 4, further comprising approving
the first software package and the second software package
for promotion in response to receiving from an input device
an indication of a manual approval from a user.

7. The method of claim 6, wherein a user-selectable
approve feature is presented on a presentation device asso-
ciated with the continuous deployment system.

8. The method of claim 4, further comprising approving
the second software package for promotion by automatically
determining that the second software packages is associated
with a later revision number than the first software package.

9. The method of claim 4, further comprising approving
the second software package for promotion by automatically
determining the second software packages has passed more
software tests included in the one or more software tests than
the first software package.

10. The method of claim 1, further comprising determin-
ing compatibility between the first software package and the
third software package based at least partly on a revision

US 9,454,351 B2

17

number associated with the first software package and a
revision number associated with the third software package.
11. A system for deploying software, the system compris-
ing:
a computer interface configured to receive first source
code modifications and second source code modifica-
tions for a source code package; and
a software deployment manager comprising computer
hardware processor, the deployment manager config-
ured to:
automatically build a first software package of the
source code package having the first source code
modifications and a second software package of the
source code package having the second source code
modifications;

select the first software package for promotion from a
source stage to a destination stage, wherein the first
software package and the second software package
are included on the source stage and approved for
promotion to the destination stage, and wherein the
first software package is compatible with a third
software package included on the destination stage;

automatically initiate one or more software tests against
the first software package to determine whether to
promote a modified software package, wherein to
automatically initiate the one or more software tests
the deployment manager is configured to lock a
testing environment on which the first software pack-
age is operating to prevent additional deployments to
the testing environment during testing;

approve the first software package for promotion to a
deployment environment when the one or more
software tests are passed by the first software pack-
age, wherein the first software package is promoted
through a plurality of stages prior to the promotion to
the deployment environment; and

cause the first software package to be deployed to the
deployment environment.

12. The system of claim 11, wherein the deployment
manager is further configured to: approve the second soft-
ware package for promotion to the deployment environment
when the one or more software tests are passed by the
second software package, where in the second software
package is promoted through the plurality of stages prior to
the promotion to the deployment environment.

13. The system of claim 11, wherein the system further
comprises storage nodes configured to store source code
related data, the source code related data comprises one or
more of code changes, code versions, versioning data,
change history, code backups, code metadata, developer
identifications, and continuous deployment system events.

14. The system of claim 11, wherein the computer inter-
face comprises a pipeline interface configured to report
progress of deployment of the software.

15. The system of claim 14, wherein the pipeline interface
is further configured to rollback to a previously deployed

10

15

20

25

30

35

40

45

50

55

18

version of the first software package when the one or more
software tests are failed by the first software package.

16. The system of claim 11, wherein the deployment
environment is determined based at least partly on promo-
tion configurations provided by a user.

17. The system of claim 11, wherein the deployment
manager is further configured to determine compatibility
between the first software package and the third software
package based at least partly on associated revision num-
bers.

18. The system of claim 11, wherein each of the plurality
of stages is involved with at least one software test that is
different from software tests in other stages.

19. Non-transitory computer storage having stored
thereon instructions that, when executed by a computer
system, cause the computer system to:

in response to receipt of first source code modifications to

a source code package, automatically build a first
executable software package of the first source code
package having the source code modifications;
in response to receipt of second source code modifications
to a source code package, automatically build a second
executable software package of the source code pack-
age having the second source code modifications;

select the first executable software package for promotion
from a source stage to a destination stage, wherein the
first executable software package and the second
executable software package are included on the source
stage and approved for promotion to the destination
stage, and wherein the first executable software pack-
age is compatible with a third executable software
package included on the destination stage;

deploy the first executable software package software

package to a deployment environment;
automatically initiate one or more software tests on the
first executable software package to determine whether
to deploy the first executable software package;

approve the first executable software package for promo-
tion to a deployment environment when the one or
more software tests are passed by the first executable
software package, wherein the first executable software
package is promoted through a plurality of stages prior
to the promotion to the deployment environment and
automatically rolled back to a previously deployed
version of the first executable software package when
the one or more software tests are failed by the first
executable software package; and

cause the first executable software package to be deployed

to a second deployment environment based at least
partly on determining that the first executable software
package includes latest approved revisions.

20. The non-transitory computer storage of claim 19,
wherein each of the plurality of stages is involved with at
least one software test that is different from software tests in
other stages.

